

Migration of Intelligent Autonomy into Embedded Instrumentation for the Optimization of Process Monitoring and Control

> AEC /APC Symposium September 2005 Rick Daignault

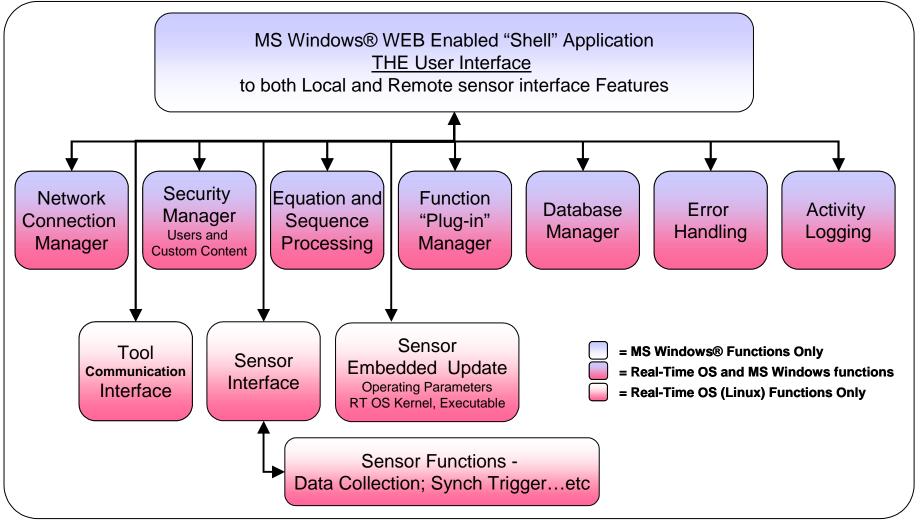
Environmental Conditions

- Many process tool installations require industrial computers (PCs) for sensor control and monitoring
 - Cost and maintenance burden for OEM and FAB
 - More potential failure points
 - Degraded
 communication
 integrity:
 - Added latency,
 - Cabling

- PCs typically use Windows® Operating System
 - Susceptible to viruses and hacking when networked
 - Not real-time performance

Marketplace

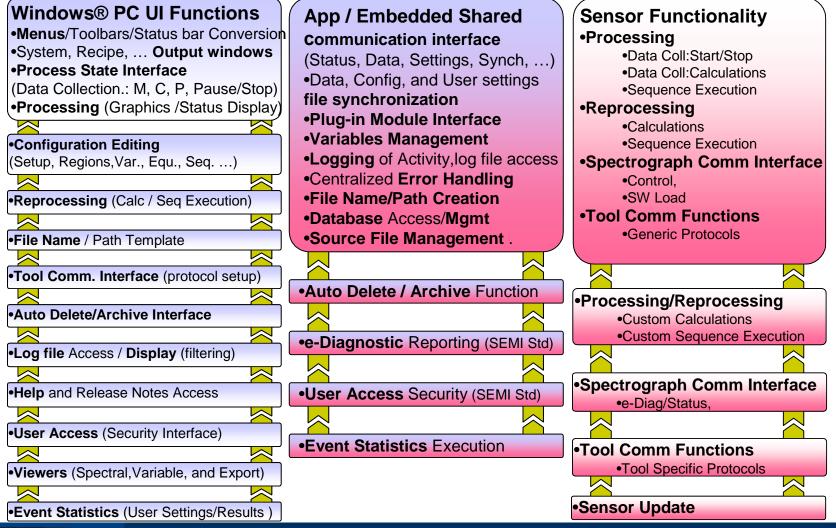
- Specific markets require customized PC solutions
 - Specific PC Vendors required in some cases.
 - Versions of Windows® OS "Frozen".
 - Windows sensor application software interface "productized".
 - Multiple versions of PC application software must be maintained.
 - Many existing applications reaching limits of enhancements and customization.
 - Manufacturing and labeling of PC components vary by market.


Migration Solution

- Eliminate the industrial PC and Windows® OS
- Separate real-time functions from User Interface(UI)
 - Adopt a truly deterministic / real-time embedded OS and embed the real-time (RT) functions in the Sensor
 - Allow any PC platform to act as an "as needed" UI
- "Modularize" software elements (RT and UI)
 - Create automated method for adding / removing functional components
 - Allow specific marketplace users to perform their own customization
- Adopt Industry and Semi Standards
 - Communication; Security; Diagnostics...etc

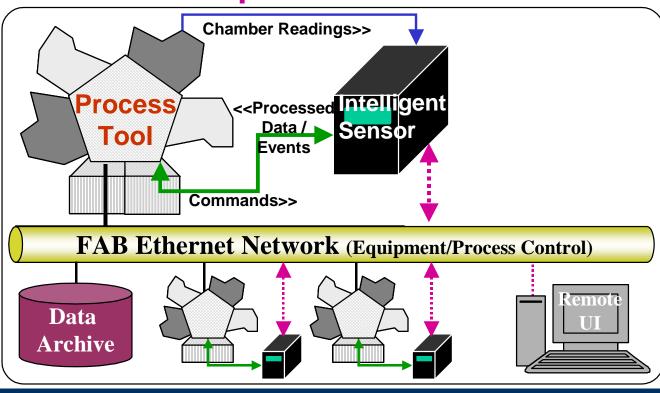
Functional Separation

Component Foundation



Modularization

Verity Example



Post Migration / Connectivity

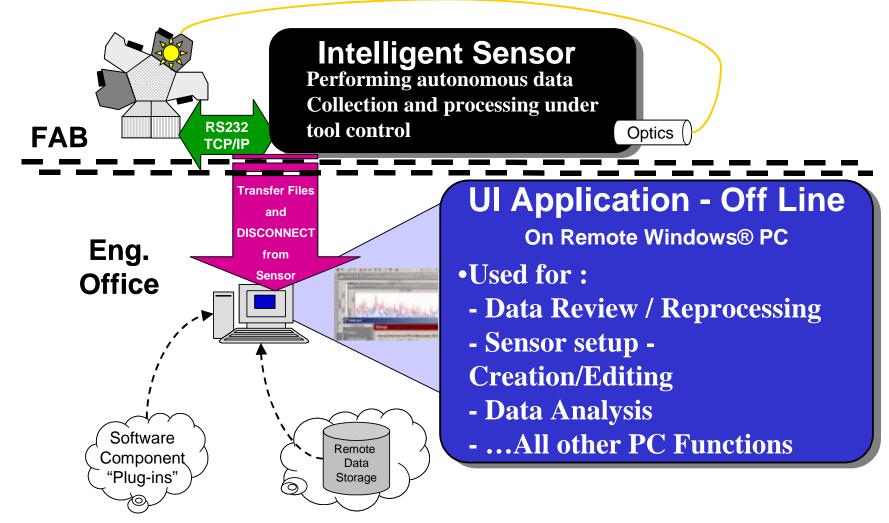
Permanent Connection - Green

- Tool control to Sensor
- Processed Data and Events from Sensor
- Temporary Connection Purple
 - Status
 Monitoring
 - Setup
 - Data download
 - SW Update

UI Operating Modes - On-Line / Off-Line

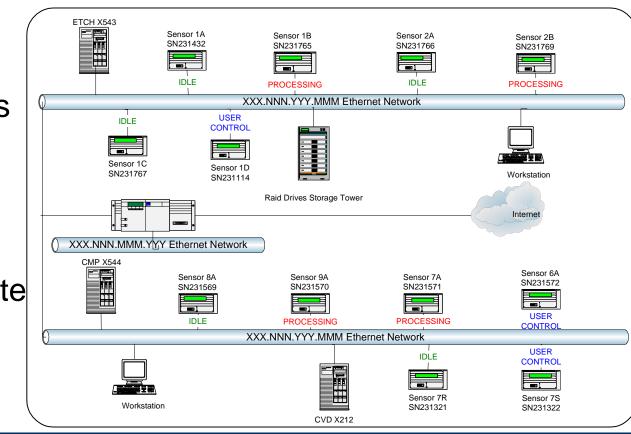
- On-Line
 - The User Interface (UI and its Host PC) has a current network connection to an Intelligent Sensor.
 - When ON-Line, Data and other files are stored / referenced based on Sensor Internal Storage locations.
- Off-Line
 - The User Interface (UI and its Host PC) has NO connection to any sensor.
 - When OFF-Line, Data and other files are stored / referenced based on either:
 - 1. User settings, or
 - 2. The installation directory of the Hosting PC.

UI On-Line


Real-Time (Deterministic)

- Applies ONLY to the Operating System and Embedded Software processing data.
- Does NOT apply to the User Interface functions
- Live (Approaching Real-Time / Not Deterministic)
 - UI Updates (Sensor graphs) and other Information MAY / MAY NOT be deterministic due to:
 - A. Priority of data processing and Endpoint Detection;
 - B. UI message transfer time; and
 - C. The OS Hosting the User Interface (MS Windows®).
 - Thus: "Live" Data display update =
 - Real-Time + Latency(A) + Latency(B) + Latency(C)

UI Off-Line


Engineering Analysis

Administration

- Sensor "Surveying" Any Single Remote PC can be used for:
 - Viewing statistics and connection status for multiple sensors
 - Comparing
 - SW Versions
 - Recipes
 - Error Status
 - Cloning
 - Group Update

Implementation and SEMI Standards

- Use of Industry leading tools and frameworks
 - UI: Microsoft Visual Studio, Embedded Linux: eclipse
 - Open standard protocols : SOAP/XML and HTTP
- Linux
 - Adopt / customize kernel for RT performance
- Interface "A"
 - Access and Communication Security
 - Protocol standards for remote UI message passing
- Adopt appropriate E54 Sensor standards
 - Tool and FAB communication message passing
- Assess 3522,3510,3509,3563 readiness /applicability
 - E-diagnostics support for "Surveyor" function

Challenges

- Retention of all the existing features and functions.
 - As performed by the PC while receiving readings from the sensor during process tool operation
 - Example: reprocessing of collected data and analysis must produce consistent multi-platform results both online and off-line.

Management of multiple remote connections by a single UI PC.

- Network Interrogation and Sensor detection.
- Managing the "Live" UI update rate.
 - Keeping the rate reasonable for users while not impacting real-time processing.
- Function Module update in the field.

Conclusions / Benefits

- PC Elimination and Function Migration
 - Reduces cost for hardware and maintenance
 - Improves system reliability and integrity by reducing number of wired communication paths
- Use of customized real-time OS (Linux)
 - True real-time performance and determinism
 - Hacking and Virus attacks reduced or eliminated
- Modular Software Approach
 - Increases customization options
 - Isolates functional failures for faster diagnosis & repair
 - Allows sharing of code between platforms
 - Improves performance

Recognition

- The following have provided valuable contributions to this presentation:
 - Tim Michals
 - Steve Hartmann

