

Novel Two Channel Self Registering Integrated Macro Inspection Tool

Arun Aiyer, Andy Kueny, Mark Meloni, Mike Whelan

Verity Instruments, Inc.

Outline

- Technology Description
 - Principle of operation
- Simulated Reflectance map of spinning patterned wafer
 - Conventional approach
 - Verity's approach
- Simulated real time difference image signal – "Die-by-Die" subtraction
- Hardware

Technology Snap-shot

• $(r-\theta)$ spiral scan of the wafer surface

- Enables compact design and provides higher throughput
- Eliminates pattern induced image inhomogeneity due to wafer rotation

Differential Diffractometer

- Real time difference image
 - Reduces noise from under layer pattern
 - Mitigates color (thickness variation) noise
 - Eliminates misalignment in "die-to-die" subtraction

Spiral Scan of Patterned Wafer

180

In spiral scan, surface pattern continuously changes its orientation with respect to the incidence plane

- Diffraction Efficiency of zero order light from a L/S pattern
 - $DE_{r,i} = |R_{s,i}|^2 \{k_{r,i}/(k_o.n.cos\theta)\}$ where $k_{r,i} = [(k_o.n)^2 k_{x,i}^2 k_y^2]^{1/2}$
 - $k_o = 2\pi/\lambda_o$, $k_{x,i} = k_o[n.sin\theta.cos\phi i\lambda_o/\Lambda]$, $k_y = k_o n.sin\theta.sin\phi$
 - Azimuth $\phi = 0^0$ classical diffraction
 - Azimuth $\phi = 90^{\circ}$ conical diffraction
 - Incidence angle θ
 - J.Opt Soc. Am. A **12** p.1068, 1995

Classical and Conical Diffraction

Source: Classical Optics and its Applications by Masud Mansuripur (Publisher Cambridge) p. 234

Simulated Reflectance Map of a 90 Wafer Surface 90

Spiral scan starts at Classical

Spiral scan starts at Conical

Image non-uniformity 20%

Verity Approach to Suppress Bow-tie

To eliminate image inhomogeneity,the laser beam propagates in two incidence planes that are orthogonal to each other

> Simulated reflectance map from the embodiment on the left. Image uniformity ~97% @ 60⁰ incidence

Wafer

Optics Arrangement for Bow-tie Suppression

Beam Path for s-pol. Light

TE polarization in both planes of incidence

Beam Path for p-pol. Light

TE polarization in both planes of incidence

Simultaneous Acquisition of Two Wafer Images

S- and P- components of the input beam travel through both planes of incidence as s- polarized beam

Origin of Difference Image

Because of difference in scattering cross section and difference in local electric field, the two counter propagating beams should experience different amount of scattering at the defect site. Therefore the difference signal should have no or minimal:

- 1. Die misalignment noise, Color Noise and Pattern noise
- 2. Impact from under layer in recipe preparation

Role of Field Asymmetry in Defect Detection

Electric Field Difference Experienced by Symmetric Defects

Verify symmetric Field Experienced by Symmetric Defects

Difference Image Signal due to Symmetric Defect

- Pattern noise reduction
- Minimal Impact from Under layer
 in recipe preparation

Macro Inspector System

Envelope: 24x24x18 in³