

Method for Real Time Monitoring of Gas Composition with High Sensitivity Using Optical Emission Spectroscopy

AEC /APC Symposium September 2007

Kenneth Harvey¹, KeunHee Bai², Yongjin Kim², John Corless¹, Andrew Kueny¹, Youngman Lee³

¹ Verity Instruments, Inc.
 ² Samsung Electronics Co. Ltd., R&D Center, Semiconductor
 ³ Woowon Technology Co., Ltd.

- Introduction
- Etch Process
- Method of Analysis
- Results for bare Si wafers
- Results for production wafers
- Conclusions
- > Acknowledgements

Gate CD is a critical parameter for DRAM Etch
 O₂ flow rate has been shown to be correlated to CD skew¹. Multi-way PCA was used.

- ➢ Goal:
 - Detect by OES the effect of O₂ flow variation in the etch process
 - Use multivariate analysis methods

¹Yongjin Kim, Gyungjin Min, Changjin Kang, Hanku Cho, and Jootae Moon, "Real-time process monitoring by optical emission spectroscopy in DRAM gate CD control", Semiconductor Manufacturing, ISSM 2005, IEEE International Symposium. p136, 2005.

Introduction

Observe the emission spectra from the plasma

- Originates from the region of the etch chemistry
- Emission spectra related to the O₂ flow
- Compensate for absorption from window clouding
 - Etch chemistry creates fluorocarbon polymers to enhance etch selectivity
 - Fluorocarbon polymers coat window increasing optical absorption
 - Window coating absorption
 - In UV-Visible, large and non-linear with wavelength
 - In Near-IR, small and linear with wavelength
- Method is inexpensive and requires no modification of the etch chamber
- Data is only spectra, i.e. no RF parameters

Process

Dry etch with RF Plasma >Chemistry Break-through Etch $-CF_4 + O_2 + Ar$ Main Etch - $CF_4 + CHF_3 + CH_2F_2 + O_2 + Ar$ Increasing O₂ flow will decrease polymer formation and decrease gate CD No pre-cleaning or post cleaning step -causes more polymer coating of window Confinement ring reduces ion bombardment of >window and increases polymer coating of window

Method of Analysis

Look for simple method that has high sensitivity >Create a predictive model for the etch processes >PCA method Versatile PSI can be Q, T², or PC projection PLS method >PSI is closely related in magnitude to the true flow rate. Valid for small changes in the response variable Selects variance that is specified by response variable Adaptive PLS – correct for drift Verity method of FDC (US patent 6,830,939) PSI = process state index

Results – Bare Si Wafers

Demonstrate method with bare Si wafers

- Simpler spectra no etch chemistry
- Reduces window clouding
- Perform calibration with O₂ flow rates at known values

Results – Bare Si Wafers

Break-through Etch - Validation

 O_2 flow (0.05 sccm/div)

Method of Analysis – Figure of Merit

 Response R_S = dy_N / dr_N

 Repeatability R_R = 1/σ(y_N)

Sensitivity $S = R_S * R_R = (dy_N / dr_N)(1/\sigma)$

 $y_N = y/y_{nom}$, is the normalized PSI variable $r_N = r/r_{nom}$, is the normalized flow rate PSI = process state index

Results – Bare Si Wafers - adaptive PLS

Break-through Etch Validation

Wafers	4,6,8	10,12,14,16,18
Std Dev	0.0003	0.0002
Repeatability	3203	4259
Response	1.06	0.976
Sensitivity	3389	4155

- Demonstrate method with product wafers
- Test result of calibration on production wafers over two week period
- More complex spectra etch chemistry and etch products
- Increased window clouding
- Perform calibration, as before, with O₂ flow rates at known values

Process – Hard Mask Etch

Results – Product Wafers - Calibration

Calibration/ Validation - UV-visible spectra

 O_2 flow (0.1 sccm/div)

Results - Product Wafers - Calibration

Calibration with UV-visible spectra is degraded by window clouding, which causes small changes that are greatest in UV and least in red.

The intensity of the UV-visible spectra decreases in time more in the UV spectral region and less in the red region.

UV-visible spectra collected over twoweek period

Window clouding causes greater intensity decrease in UV region of spectra.

Calibration data is red trace

Therefore window transmission may be high in Near-IR spectral region.

Detectors

wavelength (microns)

Results - Windows

Windows with progressive exposure to plasma.

Window 1 Window 2

Results - Windows

Transmission of Windows

Verity Instruments SD512NIR[™] Series spectrograph

Verified that window transmission is greater in Near-IR and spectral intensity decreases in time less than in UV-Visible region.

Useful in FDC analysis to compensate for small window clouding effects

NIR spectra intensity normalized to intensity at 1505 nm

Normalized intensity shows almost same profile over time

FDC is possible in Near-IR with normalized intensity

- Near-IR spectra normalized to intensity of spectra on 12/07
- Intensity decrease is nearly constant for all wavelengths

Near-IR spectra

NIR endpoint is stable with window clouding

Endpoint trend with Neural-PCA™ data collected over two week period

NIR PCA Model: Region 2

No monotonic increase or decrease between Periodic Maintenance (PM)

Random variation is small compared to that of UV-visible PCA

 O_2 flow (0.1 sccm/div)

PLS Calibration with NIR spectra and the measured oxygen flow of the etched wafers

Measured Skew (2.0 nm/div)

PLS Calibration with NIR spectra and the measured skew of the etched wafers

PLS Calibration - Region 2 - NIR spectra

Method	flow	skew
Std Dev	0.0003	0.012
Repeatability	3007	84.9
Response	0.995	12.2
Sensitivity	2991	1034

NIR PLS Calculation of O₂ Flow Rate

Production Data (1 week)

NIR PLS Calculation of Skew

Production Data (1 week)

Future Work: New Robust Window Design

New method for window protection (patent pending)

Conclusions

- > This method produces an effective PSI for fault detection of O_2 flow.
- Windows with clouding have greater transmission in the near-IR spectral region.
- Multi-channel arrays and heated windows will decrease clouding and improve transmission.
- Endpoint and multivariate techniques are facilitated in the NIR.
- NIR detection will have application with related chemistries, such as C₄F₆, C₄F₈, etc., which may produce fluorocarbon deposits on windows.

Optical Endpoint & Semiconductor Process Control since 1981

Acknowledgements

Samsung Memory Youngjae Jung

Verity Instruments, Inc. Doug Mahlum

Woowon Technology Co., Ltd Jong Soo Kim

