

# Use of Spectrograph-based OES for SiN Etch Selectivity and Endpoint Optimization

#### F. G. Celii and C. Huffman Texas Instruments, Inc., Dallas, TX, USA

#### J. Hosch\* and K. Harvey Verity Instruments, Carrollton, TX, USA

\*Presenter

AEC/APC Symposium XII





8/10/01

Texas Instruments

# Goals of the Project

- Develop a new process for etching SiN
  - NO + F are active etch species in SiN etch
  - Kastenmeier, Matsuo and Oehrlein, J. Vac. Sci.
    Technol., A17 (1999) 3179
- Use N2 + O2 with CH2F2 in Ar to generate NO in the chamber

8/10/01

**TEXAS INSTRUMENTS** 

• Determine optimum gas mix for rapid etch

AEC/APC Symposium XII

- Use OES to monitor NO concentration
- Use OES to detect endpoint



FG Celii & JW Hosch

## Ar AND Ar/N<sub>2</sub> PLASMA OES



AEC/APC Symposium XI

ER42B, Ar or Ar/N<sub>2</sub>, 500 W

FG Celii & JW Hosch



**Texas Instruments** 

#### **OES TRANSITIONS**



**AEC/APC Symposium XIII** 

8/10/01

Texas Instruments



# Ar AND Ar/O<sub>2</sub> PLASMA OES

ER42B, Ar or Ar/O2, 500 W



AEC/APC Symposium

FG Celii & JW Hosch



ľ

**TEXAS INSTRUMENTS** 

# Ar/N<sub>2</sub> /O<sub>2</sub> PLASMA OES



**AEC/APC Symposium XI** 

8/10/01

TEXAS INSTRUMENTS

6

FG Celii & JW Hosch



## PLASMA OES DURING SiN ETCH



**AEC/APC Symposium XIII** 

7

**TEXAS INSTRUMENTS** 

Ľ)



## $CH_2F_2$ & $CF_4$ in Ar Etching Silicon



FG Celii & JW Hosch





FG Celii & JW Hosch



ĽĽ)

**TEXAS INSTRUMENTS** 

# CH<sub>2</sub>F<sub>2</sub> & CF<sub>4</sub> in O<sub>2</sub> & Ar Etching Silicon



FG Celii & JW Hosch



8/10/01

# CH<sub>2</sub>F<sub>4</sub> & CF<sub>4</sub> in Ar Etching Photoresist



FG Celii & JW Hosch



AEC/APC Symposium XIII

# CH<sub>2</sub>F<sub>2</sub> & CF<sub>4</sub> in O<sub>2</sub> & Ar Etching Photoresist



FG Celii & JW Hosch



**AEC/APC Symposium XIII** 

8/10/01

**TEXAS INSTRUMENTS** 

Ĵ.





#### **AEC/APC Symposium XII**

Texas Instruments



#### 200-300 nm Emission Lines of Species that

#### **Change Concentration at Endpoint**

| WL      | Species          | Intensity | WL      | Species                     | Intensity | WL     | Species                     | Intensity | WL      | Species                      | Intensity |
|---------|------------------|-----------|---------|-----------------------------|-----------|--------|-----------------------------|-----------|---------|------------------------------|-----------|
| 201.18  | co               | 8         | 239.96  | CF                          | 9         | 253.23 | 0 <sub>2</sub> <sup>+</sup> | 6         | 276.12  | CF2                          | 5         |
| 202.58  | co               | 9         | 240.22  | SiF <sub>3</sub>            | 10        | 253.92 | SiF                         | 7         | 276.19  | 0 <sub>2</sub> <sup>+</sup>  | 7         |
| 204.63  | co               | 10        | 240.73  | SiF <sub>3</sub>            | 9         | 255.03 | co⁺                         | 7         | 277.42  | CF <sub>2</sub>              | 5         |
| 206.76  | со               | 10        | 240.76  | со                          | 7         | 255.06 | CF <sub>2</sub>             | 8         | 278.05  | SiO                          | 7         |
| 208.893 | Si               | 6         | 240.91  | CO⁺                         | 6         | 255.07 | N 2                         | 8         | 278.54  | co                           | 8         |
| 208.99  | CO               | 10        | 241.38  | SiO                         | 7         | 255.79 | NO                          | 5         | 279.97  | CO                           | 9         |
| 210.72  | со               | 7         | 241.94  | CO⁺                         | 8         | 255.82 | CF                          | 7         | 279.98  | CF <sub>2</sub>              | 8         |
| 211.24  | co⁺              | 8         | 242.20  | SiF <sub>3</sub>            | 7         | 256.38 | SiO                         | 5         | 280.63  | SiO                          | 8         |
| 211.31  | со               | 9         | 242.74  | SiF <sub>3</sub>            | 10        | 257.77 | co⁺                         | 10        | 281.04  | NO                           | 5         |
| 212.412 | Si               | 7         | 243.30  | NO                          | 7         | 258.10 | 0 <sub>2</sub> +            | 8         | 281.13  | он                           | 6         |
| 212.83  | CO               | 8         | 243.39  | CO                          | 9         | 258.71 | SiO                         | 5         | 281.60  | ОН                           | 6         |
| 213.78  | co⁺              | 6         | 243.82  | co⁺                         | 9         | 259.50 | CF <sub>2</sub>             | 9         | 281.91  | он                           | 6         |
| 215.02  | co               | 8         | 244.58  | CO⁺                         | 10        | 259.51 | SiF                         | 5         | 282.37  | 0 <sub>2</sub> <sup>+</sup>  | 8         |
| 215.49  | NO               | 7         | 244.73  | SiF <sub>3</sub>            | 9         | 259.57 | NO                          | 9         | 282.90  | ОН                           | 6         |
| 217.30  | co               | 9         | 244.80  | N 2                         | 10        | 260.72 | co⁺                         | 8         | 283.31  | co                           | 10        |
| 218.98  | co⁺              | 10        | 245.25  | SiF <sub>3</sub>            | 7         | 260.83 | NO                          | 6         | 285.25  | CF <sub>2</sub>              | 6         |
| 219.68  | со               | 10        | 245.76  | CF <sub>2</sub>             | 7         | 262.66 | NO                          | 6         | 285.5   | C <sub>2</sub>               | 10        |
| 222.15  | co               | 10        | 246.32  | co                          | 10        | 262.85 | CF <sub>2</sub>             | 9         | 285.95  | NO                           | 7         |
| 223.61  | NO               | 6         | 247.36  | CO⁺                         | 10        | 263.00 | CO                          | 6         | 286.61  | CF <sub>2</sub>              | 6         |
| 223.83  | со               | 9         | 247.39  | CF                          | 8         | 263.27 | 0 <sub>2</sub> <sup>+</sup> | 6         | 288.158 | Si                           | 7         |
| 224.72  | co               | 7         | 247.42  | co⁺                         | 10        | 263.88 | co⁺                         | 8         | 288.18  | CO <sub>2</sub> <sup>+</sup> | 9         |
| 226.17  | co               | 9         | 247.857 | С                           | 10        | 265.24 | CF2                         | 6         | 288.40  | CO2 <sup>+</sup>             | 9         |
| 226.94  | NO               | 8         | 247.87  | NO                          | 10        | 266.05 | N <sub>2</sub>              | 5         | 289.03  | 0 <sub>2</sub> <sup>+</sup>  | 7         |
| 228.61  | CO               | 7         | 248.68  | SiO                         | 6         | 266.53 | CO                          | 8         | 289.26  | NO                           | 10        |
| 229.89  | SiO              | 6         | 248.78  | CF <sub>2</sub>             | 9         | 266.90 | SiO                         | 9         | 289.35  | CF2                          | 7         |
| 229.96  | CO⁺              | 10        | 248.83  | 0 <sub>2</sub> <sup>+</sup> | 6         | 267.24 | CO⁺                         | 7         | 289.44  | SiF                          | 6         |
| 231.15  | co               | 8         | 249.29  | со                          | 8         | 267.55 | CF <sub>2</sub>             | 6         | 289.51  | CO <sub>2</sub> <sup>+</sup> | 9         |
| 231.27  | C <sub>2</sub>   | 8         | 249.34  | NO                          | 7         | 268.00 | NO                          | 5         | 289.75  | CO2 <sup>+</sup>             | 9         |
| 232.52  | CO⁺              | 9         | 250.46  | CO⁺                         | 10        | 268.81 | CF2                         | 5         | 290.19  | 0 <sub>2</sub> <sup>+</sup>  | 7         |
| 232.78  | CF               | 10        | 250.690 | Si                          | 5         | 269.37 | SiO                         | 9         | 292.13  | CF2                          | 6         |
| 233.79  | со               | 7         | 250.99  | co                          | 8         | 269.83 | co                          | 6         | 295.32  | N <sub>2</sub>               | 6         |
| 234.43  | SiO              | 5         | 251.432 | Si                          | 4         | 270.53 | 0 <sub>2</sub> <sup>+</sup> | 7         | 296.20  | N 2                          | 6         |
| 235.14  | N 2              | 6         | 251.611 | Si                          | 10        | 271.13 | CF <sub>2</sub>             | 9         | 296.7   | C <sub>2</sub>               | 10        |
| 235.25  | CO⁺              | 6         | 251.86  | CF <sub>2</sub>             | 9         | 272.22 | NO                          | 8         | 296.71  | SiF                          | 6         |
| 236.57  | SiO              | 6         | 251.921 | Si                          | 3         | 272.23 | CO⁺                         | 7         | 297.00  | 0 <sub>2</sub> *             | 7         |
| 237.02  | NO               | 10        | 252.412 | Si                          | 7         | 274.26 | со                          | 6         | 297.68  | N <sub>2</sub>               | 6         |
| 238.16  | со               | 6         | 252.851 | Si                          | 6         | 274.91 | CF <sub>2</sub>             | 8         | 297.74  | со                           | 9         |
| 238.27  | SiF <sub>3</sub> | 7         | 252.97  | co⁺                         | 7         | 275.43 | NO                          | 9         |         |                              |           |
| 238.79  | SiO              | 5         | 253.02  | NH                          | 9         | 275.50 | SiO                         | 6         |         |                              |           |

#### FG Celii & JW Hosch

8/10/01







## Blanket Etch Results: Survey of N<sub>2</sub>/O<sub>2</sub> Flow



AEC/APC Symposium

8/10/01

**TEXAS INSTRUMENTS** 

Ĵ.

FG Celii & JW Hosch



Methods for Developing an Endpoint Detection Algorithm for a New Process

- The Plasma Process: Etch SiN stopping on silicide using  $CH_2F_2$  in Ar with  $O_2$
- Similar to other SiN etches
- Previous endpoint wavelength
  = 387 nm CN
- Difference Spectrum → Ratio of Wavelengths
- NeuralPCA Multivariate Method

**AEC/APC Symposium XIII** 

FG Celii & JW Hosch



**TEXAS INSTRUMENTS** 

# 387 nm Emission of CN from Etching a Blanket Film of SiN on Silicide



FG Celii & JW Hosch



**AEC/APC Symposium XIII** 

8/10/01

**TEXAS INSTRUMENTS** 

### **Regions Defined Using Difference Spectrum**



#### FG Celii & JW Hosch



**AEC/APC Symposium XIII** 

8/10/01

**TEXAS INSTRUMENTS** 

## **Expanded View of Regions**



**AEC/APC Symposium XIII** 

FG Celii & JW Hosch



8/10/01

**TEXAS INSTRUMENTS** 

# Dominant Normalized Intensity Changes at Endpoint



#### FG Celii & JW Hosch

8/10/01

Verik

**AEC/APC Symposium XIII** 

Texas Instruments

## Ratio Endpoint on Wafer Without Resist



#### FG Celii & JW Hosch



**AEC/APC Symposium XIII** 

2

8/10/01

### Ratio Endpoint on Patterned Wafer



FG Celii & JW Hosch



**AEC/APC Symposium XIII** 

Texas Instruments

2

8/10/01



## First NPCA Calibration



**AEC/APC Symposium XIII** 





Texas Instruments

# Results of First NPCA Calibration Used on the Calibration Wafer



**AEC/APC Symposium XIII** 

FG Celii & JW Hosch



Texas Instruments

8/10/01



## Second NPCA Calibration



**AEC/APC Symposium XIII** 

FG Celii & JW Hosch



8/10/01

Texas Instruments



# Results Second NPCA Calibration Used on the Calibration Wafer



FG Celii & JW Hosch



AEC/APC Symposium XIII

8/10/01

# Comparison NPCA Calibration v.s. Ratio Endpoint Etching a Patterned Wafer



**AEC/APC Symposium XIII** 

FG Celii & JW Hosch



8/10/01

**TEXAS INSTRUMENTS** 

#### **ENDPOINTED ETCH RESULTS x-SEM OF PATTERNED WAFERS** 39.5 s etch

SRAM, center

INSTRUMENTS, INC





# Conclusions

- $N_2$  and  $O_2$  in Ar with  $CH_2F_2$  do enhance the SiN etch rate.
- Flow ratios for maximum etch rate and maximum selectivity.
- Overlapping spectral lines may adversely affect tracking NO concentration using actinometry. More work is required.
- The NeuralPCA multivariate endpoint technique can accommodate unresolved spectra from closely spaced emission lines.
- NPCA is easier to implement than selected wavelength endpoint techniques.
- Anticipate NPCA endpoint sensitivity similar to  $SiO_2$  contact etch.

AEC/APC Symposium XII

FG Celii & JW Hosch



**TEXAS INSTRUMENTS**