Stable OES System for Fault Detection and Process Monitoring

John D. Corless, K. C. Harvey, Andrew Kueny, Mike Whelan Verity Instruments, Inc. 2901 Eisenhower St. Carrollton, TX 75007 customerservice@verityinst.com

SPECIAO ORANHO ADVANCED FROCESS CONTROL

PLASMA DIAGNOSTICS

Motivation

- OES as tool for process monitoring, chamber matching¹, and fault detection²
- In order to detect changes in a plasma process, the entire measurement path must be stable
 - Δ Signal only arises from Δ Plasma
- Stability means
 - Unit-to-unit repeatability
 - Low <u>drift</u> over time
- ¹ ISMI Equipment Chamber Matching (ECM) Project ² – H. H. Yue et al., IEEE Trans. Semi. Manu., <u>13</u>, No. 3, Aug. 2000, Pg. 374-385

AEC/APC Symposium XIX

Optical Systems for OES

- Four primary sub-systems in OES path (window, optics, fiber, spectrograph)
- Each can impact <u>drift</u> and <u>unit-to-unit</u> variation

Chamber Coupling Optics

- Most common are direct (no lenses) and simple focusing lenses
- Mostly susceptible to <u>unit-to-unit</u> variations
 - Geometric alignments
 - Lens tolerances
 - Broadband AR coatings (if applicable)
- Specific to each installation

Window Transmission

- Re-deposition of particulate causes clouding $\rightarrow \underline{drift}$
- Depends on chamber geometry and process
- Δ Transmission/ Δ Time can approach 20%/day

Robust Window Design

FIG. 2

AEC/APC Symposium XIX

Robust Window Design*

- Solution is to combine
 - Multi-channel array
 - Positive pressure
- High optical transmission
- Low gas conductance means negligible gas flow into process chamber
- Utilizes existing (inert) process gases
- Virtual elimination of clouding means zero drift

* Patent pending

Optical Fibers

- Most convenient means to transfer signal from chamber to spectrograph
- Available with good transmission down to λ ~193nm
- Subject to <u>drift</u> primarily from solarization in the UV
- And subject to <u>unit-to-unit</u> variation primarily from coupling geometry

Fiber-to-Spectrograph Coupling

Coupling
$$\approx I_0 \cdot \delta \cdot D_F \left[1 - \frac{2(X_F - X_S)^2}{D_F^2} \right] \cdot T(\lambda)$$

 $I_0 =$ Irradiance entering fiber in W/cm²

 δ = Slit width

 D_F = Fiber core diameter

 $X_F - X_S$ = Transverse offset from fiber to slit

 $T(\lambda) =$ Transmission of fiber

- Red overlap region is signal collected by spectrograph ("Coupling")
- To lowest order coupling depends on transverse errors from slit to fiber core
- Verity's products minimize coupling variations

Variation Between Fibers

- Four different fibers measured relative to a (new) fifth
- $D_F = 200 \mu m$, $X_F X_S = \pm 0.002$ " $\rightarrow \approx 13\%$ variation <u>unit-to-unit</u>
- Solarization gives rise to up to 80% <u>drift</u> variation in deep UV

Repeatability of Single Fiber

- Take one fiber and measure multiple repeat installations
- Mechanical connection variations and bend losses create <u>unit-to-unit</u> variation
- "Worst" case is ~5% (primarily due to bend losses), and careful control limits this to under 2% (as shown)

Spectrographs

- <u>Unit-to-unit</u> variations
 - Calibration of λ
 - Sensitivity calibration
- <u>Drift</u> sources
 - Temperature
 - Vibrations
 - Component creep
- Verity spectrographs address each of these issues

Verity Spectrographs

Product Design

- Vibration isolation (SD1024F[™] series)
- Thermoelectric cooled CCD for low noise
- Design refined through HALT testing iterations
- Over 8 years installed base of OES solutions in fabs worldwide

Precision calibration processes

- NIST traceable sensitivity calibration
- Wavelength accuracy <0.2nm
- Manufacturing processes

 HASS testing to insure outgoing quality

Example: Gas Flow FDC

- Use model based control
- Partial Least Squares

$$\bar{Y} = \bar{X} \cdot \bar{b}$$

- \bar{Y} = Vector of predictor variables
- \overline{X} = Matrix of spectra
- \bar{b} = Vector with calibrated "slopes"
- Compare sensitivity in stable OES link vs. one with <u>unit-to-unit</u> variations and <u>drift</u>

O₂ Flow Simulation

	Actual O ₂ Flow	Predicted O ₂		Average
Hardware	Rate (arb. units)	Flow Rate	Error	Error
Baseline	0.95	0.95	0%	
Baseline	1.00	1.01	1%	0%
Baseline	1.05	1.04	-1%	
New Fiber	0.95	0.98	3%	
New Fiber	1.00	1.03	3%	2%
New Fiber	1.05	1.05	0%	
Solarized Fiber	0.95	1.00	5%	
Solarized Fiber	1.00	1.06	6%	5%
Solarized Fiber	1.05	1.08	3%	
Yellow Window	0.95	1.97	107%	
Yellow Window	1.00	1.99	99%	99%
Yellow Window	1.05	1.99	90%	

• Accuracy of PLS model predictions of flow rate are impacted by unit-to-unit variation and drift

Conclusions

- The utility of an OES optical path can be increased by careful optical and mechanical design
- We have analyzed the sources of variation and shown how they can be controlled
- In critical OES applications, orders of magnitude sensitivity improvements can be made over "typical" installations

